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A unigroup is defined to be a partially ordered abelian group with a distinguished
generative universal order unit. Virtually any structure that has been proposed
for the logic, sharp or unsharp, of a physical system can be represented by the
order interval in a unigroup. Furthermore, probability states correspond to positive,
normalized, real-valued group homomorphism s, and physical symmetries
correspond to unigroup automorphisms. We show that the category of unigroups
admits arbitrary products and coproducts. A new class of interval effect algebras
called Heyting effect algebras (HEAs) is introduced and studied. Among other
things, an HEA is both a Heyting algebra and a BZ-lattice in which the sharp
elements are precisely the central elements. Certain HEAs arise naturally from
partially ordered abelian groups affiliated with Stone spaces. Using Stone
unigroups, we obtain perspicuous representations for certain multivalued logics,
including the three-valued logic of conditional events utilized by Goodman,
Nguyen, and Walker in their study of logic for expert systems.

1. INTRODUCTION

At the September 1992 meeting of the International Quantum Structures

Association (IQSA) in Castiglioncello, one of us (R.J.G.) presented a paper
entitled ª The transition to orthoalgebras.º Orthoalgebras are now widely

regarded as fundamental structures, not only in quantum logic, but in the

rapidly developing field of noncommutative measure theory (D’ Andrea and

DeLucia, 1991a,b; DeLucia and DvurecÏ enskij, 1993; RuÈ ttimann, 1980, 1989).

In the same spirit, two of us (Greechie and Foulis, 1995) advocated a ª Transi-

tion to effect algebrasº in the Proceedings of the August 1994 meeting of
the IQSA in Prague (PtaÂk, 1995). Effect algebras (Foulis and Bennett, 1994;

Foulis et al., 1996; Greechie et al., 1995)Ð also called D-posets (DvurecÏ enskij
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and PulmannovaÂ, 1994; KoÃpka and Chovanec, 1994) or generalized orthoalge-

bras (Giuntini and Greuling, 1989)Ð are playing an ever-increasing role in

the foundations of quantum mechanics.
As a follow-up to our talks at the July/August 1996 meeting of the

IQSA in Berlin, we now commend partially ordered abelian groups with

distinguished generative universal elementsÐ unigroups for shortÐ to the

attention of the quantum logic community. Whereas the earlier transitions

advocated more and more general settings in which to cast the theory, the

proposed transition to unigroups actually provides a representation theory
for effect algebras associated with physical systems that is considerably

stronger than anything available for general effect algebras.

There is no longer any novelty in the observation that, associated with

a physical system 6 under experimental study there is a so-called logic L,

the elements of which can be regarded as experimentally testable propositions

about 6. An observable for 6 is an L-valued measure !: @ ® L defined
on a boolean algebra @, and a state for 6 induces a probability measure v :

L ® [0, 1] # R (Gudder, 1988). All three of the mathematical structures @,

L, and [0, 1] are effect algebras, and the mappings !: @ ® L, v : L ® [0,

1], and v + A: @ ® [0, 1] are effect-algebra morphisms. The boolean algebra

@ and the scale algebra [0,1] are isomorphic to unit intervals in corresponding
unigroups. If there are sufficiently many probability measures v : L ® [0, 1]

to determine the order structure of L, then L, too, is isomorphic to the unit

interval in a unigroup (Theorems 2.11, 3.3, and 4.5 below). Morphisms !:

@ ® L and v : L ® [0, 1] then can be extended uniquely to normalized

positive group homomorphi sms !* and v * on the corresponding unigroups.

(This is the universal property from which unigroups derive their name.)
For a quantum mechanical system 6 represented in the usual way by a

Hilbert space *, the boolean algebra @ is the s -algebra of real Borel sets,

the logic L is the algebra of effect operators on *, the states are represented

by density operators on *, and the probability measure v corresponding to

a density W is defined by v (A) 5 tr(WA) for all A P L. The unigroup for

@ is the group C (X, Z) of continuous integer-valued functions on the Stone
space X of @; the unigroup for L is the additive group G(*) of bounded

self-adjoint operators on *; and the unigroup for [0, 1] is the additive group

R of real numbers. Effect-algebra automorphisms of L extend uniquely to

unigroup automorphisms of G(*), which in turn correspond uniquely (via

Wigner’ s theorem on symmetry transformations) to unitary or antiunitary

operators on the Hilbert space *.
Thus, the program of studying physical systems in terms of observables,

experimental propositions, states, and symmetries can be reformulated in

terms of unigroups, unigroup homomorphi sms, and unigroup automorphisms.

In this way, the highly developed theory of partially ordered abelian groups



The Transition to Unigroups 47

can be brought to bear on the study of the mathematical foundations of the

experimental sciences.

2. ORTHOSTRUCTURES AND EFFECT ALGEBRAS

An orthostructure, as defined below, is perhaps the most general alge-
braic structure that can meaningfully carry probability measures. [A corres-

pondingly general order-theoretic structure has been introduced by Gudder

(1996).]

Definition 2.1. An orthostructure is a system (L, 0, u, ’ , % ) consisting

of a set L, special elements 0,u P L called the zero and the unit, a binary

relation ’ on L called orthogonality , and a partially defined binary operation

% on L called orthosummation such that: (i) for all p, q P L, p % q is defined

iff p ’ q; (ii) if p P L, then there exist q, r P L such that p ’ q,r ’ p, and
p % q 5 r % p 5 u; and (iii) if p P L, then p ’ 0, 0 ’ p, and p % 0 5
0 % p 5 p.

Example 2.2. Let G be a multiplicatively written group, let 1 P L #
G, and let u P L be such that p P L Þ p 2 1u, up 2 1 P L. For p, q P L,

define p ’ q iff pq P L and, if pq P L, define p % q : 5 pq. (The notation : 5
means equals by definition.) Then (L, 1, u, ’ , % ) is an orthostructure.

The following example, which is a special case of Example 2.2, except

that the group is additively written, will be of special interest in the sequel.

Example 2.3. Let G be an additively written, partially ordered abelian

group and let u P G with 0 # u. Define L : 5 {p P G | 0 # p # u}. For p,
q P L, define p ’ q iff p 1 q P L and, if p 1 q P L, define p % q : 5
p 1 q. Then (L, 0, u, ’ , % ) is an orthostructure.

If no confusion threatens, we say that L is an orthostructure when we

really mean that (L, 0, u, ’ , % ) is an orthostructure.

Definition 2.4. A sub-orthostructure of an orthostructure L with unit u
is a subset S # L such that: (i) 0, u P S; (ii) if x, y P S and x ’ y, then x
% y P S; and (iii) if x P S, there exist y, z P S such that x ’ y, z ’ x, and

x % y 5 z % x 5 u.

Evidently, a sub-orthostruc ture S of an orthostructure L is an orthostruc-

ture in its own right, with the same zero and unit as L, with the restriction
to S of ’ as orthogonality, and with the restriction of % to S as the

orthosummation.

Definition 2.5. If K is an additive abelian group, then a K-valued measure
on the orthostructure (L, 0, u, ’ , % ) is a mapping f : L ® K such that, for
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all p, q P L, p ’ q Þ f ( p % q) 5 f ( p) 1 f (q). A probability measure
on (L, 0, u, ’ , % ) is an R-valued measure v such that 0 # v ( p) # 1 for

all p P L and v (u) 5 1.

A morphism from an orthostructure (L, 0, u, ’ , % ) to an orthostructure

(M, 0, v, #, M1 ) is understood to be a mapping a : L ® M such that (i) a (0)

5 0, (ii) a (u) 5 v, and (iii) if p, q P L, then p ’ q Þ a ( p) # a (q) and

a ( p % q) 5 a ( p) M1 a (q). Isomorphisms and automorphisms of orthostruc-
tures are defined in the obvious ways.

If K is an additive abelian group, # is the universal relation on K, and

f : L ® K is a K-valued measure, then f is a morphism from the orthostructure

(L, 0, u, ’ , % ) to the orthostructure (K, 0, f (u), #, 1 ). Let v be a probability

measure on L, and organize the unit interval [0, 1] in the additive partially
ordered abelian group R into an orthostructure as in Example 2.3. Then v
is a morphism from L to [0, 1].

Definition 2.6. Let L be a set of probability measures on the orthostruc-

ture (L, 0, u, ’ , % ). Say that L is a full set of probability measures iff, for
p, q P L, the condition v ( p) 1 v (q) # 1 for all v P L implies that p ’
q. Say that L is a separating set of probability measures iff, for p, q P L,

the condition v ( p) 5 v (q) for all v P L implies that p 5 q.

Definition 2.7. Let (L, 0, u, ’ , % ) be an orthostructure.

(i) L is commutative iff, for p, q P L, p ’ q Þ q ’ p and p % q 5
q % p.

(ii) L is associative iff, for p, q, r P L, q ’ r and p ’ (q % r) Þ p ’
q, ( p % q) ’ r, and p % (q % r) 5 ( p % q) % r.

Definition 2.8. An effect algebra (Foulis and Bennett, 1994) is a commu-

tative and associative orthostructure (L, 0, u, ’ , % ) satisfying the follow-
ing conditions:

(i) (Orthosupplementation law) For each p P L there is a unique q P
L such that p ’ q and p % q 5 u.

(ii) (Zero-unit law) If p P L and u ’ p, then p 5 0.

An effect algebra in which the zero and unit coincide, and which therefore

consists only of the single element 0, is said to be degenerate.

Definition 2.9. Let (L, 0, u, ’ , % ) be an effect algebra.
(i) If p P L, the unique element q P L such that p ’ q and p % q 5

u, called the orthosupplement of p, is denoted by p8 : 5 q.
(ii) If p,q P L, define p # q iff there is an element r P L such that

p ’ r and p % r 5 q.

If L is an effect algebra, then L is partially ordered by # , and 0 #
p # u holds for all p P L. Furthermore, for p, q P L, p ’ q iff p # q8.
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Because a sub-orthostructure S of an effect algebra L is again an effect

algebra, we refer to S as a sub-effect algebra of L.

Definition 2.10. Let L be an effect algebra.

(i) An element p P L is isotropic iff p ’ p.
(ii) An element p P L is principal iff, for q, r P L, q ’ r and q, r #

p Þ q % r # p.
(iii) Elements p, q P L are disjoint iff, for all r P L, r # p, q Þ r 5 0.

(iv) L is regular iff every pair of isotropic elements in L is an orthogonal

pair (Cattaneo and Nistico, 1989).

An orthoalgebra can be defined as an effect algebra with no nonzero

isotropic elements. An orthomodular poset is the same thing as an effect

algebra in which every element is principal. An effect algebra is said to be

lattice ordered iff it forms a lattice under # . An orthomodular lattice can
be defined as a lattice-ordered orthoalgebra. A boolean algebra is the same

thing as an orthomodular lattice in which disjoint elements are orthogonal.

There are orthoalgebras that are not boolean algebras, but in which disjoint

elements are orthogonal (Bennett and Foulis, 1993, Section 7).

The simplest example of an effect algebra L with a nonzero isotropic

element is obtained by taking G to be the additive group of integers and
u 5 2 in Example 2.3. The resulting three-element effect algebra, which we

call C2 (Foulis et al., 1994, Example 4.2), is lattice ordered (in fact, it is a

chain), and it is the smallest effect algebra that is not an orthoalgebra.

The following theorem, the verification of which is straightforward,

makes it clear why the logical structures associated with physical systems

are virtually guaranteed to be effect algebras. Indeed, the main reason we
elected to begin with general orthostructures (Definition 2.1), rather than

directly introducing effect algebras, is to emphasize that, whereas all of the

definitions make sense in considerable generality, the actual structures of

scientific interest are in fact the nondegenerate regular effect algebras.

Theorem 2.11. If (L, 0, u, 1, % ) is an orthostructure with a nonempty,

full, and separating set of probability measures, then L is a nondegenerate

regular effect algebra.

Henceforth, in view of Theorem 2.11, we shall restrict our attention to

effect algebras, eventually arguing that the interesting ones are the interval

algebras in a unigroup. Note that both conditions (ii) and (iii) of Definition
2.1 can be deduced from the other assumptions in the definition of an

effect algebra.

Let L be an effect algebra and let L be a set of probability measures

on L. Then L is full iff it is order determining in the sense that, for all p, q
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P L, p # q iff v ( p) # v (q) for all v P L . Therefore, if L is full, it is

automatically separating.

3. INTERVAL EFFECT ALGEBRAS

If G is an additively written, partially ordered abelian group (Goodearl,

1986), we denote the positive cone in G by G + : 5 {g P G | 0 # g}. The

standard positive cone in the additive group R of real numbers, (totally)

ordered in the usual way, is denoted by R+. Likewise, the additive group Z
of integers is (totally) ordered by the standard positive cone Z+ 5 Z ù R+.

Definition 3.1. If G is a partially ordered abelian group and u P G +,

define the interval G + [0, u] : 5 {g P G | 0 # g # u}. Then the orthostructure

L : 5 G +[0, u], as in Example 2.3, is an effect algebra. An effect algebra

isomorphic to such an effect algebra is called an interval effect algebra.

In Definition 3.1, the orthosupplementation on G + [0, u] is given by x8
: 5 u 2 x and the effect-algebra partial order is the restriction to G + [0, u]

of the partial order on G.

Theorem 3.2. A sub-effect algebra of an interval effect algebra is again

an interval effect algebra.

Proof. Bennett and Foulis (1997, Corollary 2.5). n

As a consequence of Theorem 2.11 and the following companion theo-

rem, nearly every structure that has been proposed as the logic of a physical
system is an interval effect algebra.

Theorem 3.3. If an effect algebra L has a nonempty and full set of

probability measures, it is a nondegenerate, regular, interval effect algebra.

Proof. By Foulis and Bennett (1994, Theorem 9.6, Part (v)), L is an

interval effect algebra, and by Theorem 2.11, it is regular and

nondegenerate. n

Definition 3.4. Let G be a partially ordered abelian group with positive

cone G + and let u P G +.

(i) G + is said to be a generating cone in G iff G 5 G + 2 G +.

(ii) u is a generative element of G iff G + is a generating cone and every

element in G + is a sum of a finite sequence of elements of G +[0, u].

(iii) u is an order unit in G iff, for every g P G, there exists n P Z+

such that g # nu.
(iv) u is universal in G iff, for every abelian group K, every K-valued

measure f : G +[0, u] ® K can be extended to a group homomorphism f *:

G ® K.
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To say that u is a generative element of G means that the interval G +[0, u]

generates G + as a semigroup and it generates G as a group. If u is generative,

then it is an order unit, and, if G admits an order unit, then G + is a generat-
ing cone.

Example 3.5. Let G : 5 Z as an additive abelian group, but with the
nonstandard cone G + : 5 {3m 1 5n | m, n P Z+}. Then 8 is a generative

element of G +, but it is not universal.

Lemma 3.6. If G is a lattice-ordered abelian group, then any order unit

u in G + is generative and universal.

Proof. That u is generative follows from the Riesz decomposition prop-

erty of a lattice-ordered group (Goodearl, 1986). That u is universal is a
consequence of Bennett and Foulis (1995, Theorem 4.14). n

In the so-called operational (or base-norm/order-unit) approach to the

foundations of quantum mechanics (Davies and Lewis, 1970; Edwards, 1970),

effects are represented by elements of the order interval V +[0, u] in a partially
ordered real Banach space V with an order unit u. The following lemma

connects this approach with the theory of unigroups.

Lemma 3.7. Let V be a partially ordered real vector space with positive

cone V + and let u be an order unit in V +. Then, regarding V as an additive
abelian group, u is generative and universal.

Proof. That u is generative is clear and that it is universal follows from

Bennett and Foulis (1997, Corollary 4.6). n

4. UNIGROUPS

We have now prepared the way for the following fundamental definition.

Definition 4.1. A unigroup is a triple (G, G +, u) consisting of a partially

ordered abelian group G with positive cone G + and a generative universal

element u P G + called the unit. If (G, G +, u) is a unigroup, then G +[0, u],
organized into an interval effect algebra, is called the unit interval in (G,
G +, u).

If (G, G +, u) is a unigroup, then u 5 0 iff G 5 G + 5 {0}. A unigroup

in which the unit is zero (and therefore which consists only of the single
element 0) is said to be degenerate.

Definition 4.2. Let (G, G +, u) and (H, H +, v) be unigroups. A group

homomorphism f : G ® H is positive iff f (G +) # H +, and it is normalized
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iff f (u) 5 v. A unigroup homomorphism f : G ® H is a positive normalized

group homomorphism.

Unless confusion threatens, we say that G is a unigroup with unit u
rather than saying that (G, G +, u) is a unigroup. Unigroup isomorphisms and
unigroup automorphisms are defined in the obvious ways. We omit the

straightforward proof of the next lemma.

Lemma 4.3. Let G and H be unigroups with units u and v, respectively.

Then there is a one-to-one correspondence a % a * between effect-algebra

morphisms a : G +[0, u] ® H +[0, v] and unigroup homomorphisms a *: G ®
H such that a * is an extension of a to G. Furthermore , a is an effect-algebra
isomorphism iff a * is a unigroup isomorphism.

Corollary 4.4. If G is a unigroup, then there is a one-to-one correspon-

dence a % a * between effect-algebra automorphisms a of G +[0, u] and

unigroup automorphisms a * of G such that a * is an extension of a .

For the proof of the next theorem, see Bennett and Foulis (1997, Corol-

lary 4.2).

Theorem 4.5. If L is an interval effect algebra with unit u, there is a

unigroup G with unit u such that L 5 G +[0, u].

Definition 4.6. The unigroup of Theorem 4.5, which is uniquely deter-
mined by L up to an isomorphism by Lemma 4.3, is called the universal
group (or simply the unigroup) for the interval effect algebra L.

By Corollary 4.4, the group Aut(L) of effect-algebra automorphisms of

an interval effect algebra L is isomorphic to the group Aut(G) of unigroup

automorphisms of its universal group.

Lemma 4.7. If (G, G +, u) is a unigroup and 0 Þ n P Z+, then (G, G +,

nu) is again a unigroup.

Proof. See Foulis et al. (1994, Lemma 3.5). n

Definition 4.8. If L 5 G +[0, u] is an interval effect algebra with unigroup

(G, G +, u), 0 Þ n P Z+, then nL : 5 G +[0, nu]. In particular, the interval

effect algebra 2L is said to be obtained from L by doubling.

If 0 Þ n P Z+, the interval effect algebra Cn : 5 Z+[0, n] is called the

n-chain. If L is an interval effect algebra, it is not difficult to show that nL
is isomorphic to the tensor product Cn J L in the category of interval effect

algebras (Foulis et al., 1994, Section 9).
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5. PRODUCTS AND COPRODUCTS OF UNIGROUPS

With unigroups as objects and unigroup homomorphisms as morphisms,

we obtain a category. In Foulis et al. (1994) we showed that this category
admits finite products, coproducts, and tensor products. We now show that

it actually admits arbitrary products and coproducts. (Note, however, that the

categorical products and coproducts of unigroups do not in general coincide

with the direct product and direct sums of the underlying groups.)

Theorem 5.1. The category of unigroups admits arbitrary products and
the categorical product of the universal groups of a family of interval effect

algebras is the universal group of the cartesian product of the effect algebras.

Proof. Let (Gi , Gi
+, ui) be a nonempty family of unigroups, denote by

3 iGi the cartesian product of the abelian groups Gi , organize 3 iGi into a

partially ordered abelian group with positive cone ( 3 iGi)
+ : 5 {g P 3 iG i | gi

P Gi
+ for all i}, and let u P ( 3 iGi)

+ be defined by u (i) 5 ui for all i. Let

Li : 5 Gi
+[0, ui] for all i, and let L 5 3 iLi be organized into an effect algebra

with coordinatewise operations. Evidently, L 5 ( 3 iGi)
+[0, u]. If the family

(Gi) is finite, then ( 3 iGi , ( 3 iGi)
+, u) is a unigroup, and it is the universal

group for L, but if the family (G i) is infinite, this need not be the case.

Even in the infinite case, the fact that L 5 ( 3 iGi)
+[0, u] shows that L

is an interval effect algebra, so by Theorem 4.5, there is a unigroup (G, G +,

u) with L 5 G +[0, u]. For each i, the mapping L ® Li given by p j p (i)
extends to a unigroup homomorphi sm p i: G ® Gi. We claim that, with the

projection mappings p i , G is the product of the unigroups Gi. Indeed let (H,
H+, v) be a unigroup with M 5 H +[0, v] and let f i: H ® G i be unigroup

homomorphisms for all i. Define f : M ® 3 iG i by f (q)(i) : 5 f i (q) for all
i and all q P M. Since f : M ® L # G is a G-valued measure, there is a

unigroup homomorphism f *: H ® G such that f * 5 f on M. Thus, for all

q P M, we have p i ( f *(q)) 5 p i ( f (q)) 5 f (q)(i) 5 f i (q), so p i + f * 5 f i

on M. Since M generates H as a group and both p i + f * and f i are group

homomorphisms, it follows that p i + f * 5 f i on H. n

Consider a nonempty family (Li) of nondegenerate effect algebras and

let L be an effect algebra with unit u. A family ( a i) of injective effect-algebra

morphisms a i: Li ® L is said to provide a representation of L as a horizontal
sum of the family (Li) iff the following conditions hold: (i) For each i, a i (Li)

is a sub-effect algebra of L. (ii) For each i, a i: Li ® a i (Li) is an effect-algebra

isomorphism. (iii) L 5 ø i a i (Li). (iv) i Þ j Þ a i (Li) ù a i (Lj) 5 {0, u}. (v)
i Þ j, p P a i (Li), q P a j (Lj), and p ’ q Þ p 5 0 or q 5 0.

If L is represented as a horizontal sum of the family (Li) by the injective

effect-algebra morphisms a i: Li ® L, it is clear that L is a coproduct of the

family (Li) in the category of effect algebras with respect to the morphisms a i.
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Any nonempty family (Li) of nondegenerate effect algebras has a hori-

zontal sum L with unit u, constructed as follows: For each i, form an isomor-

phic copy Ei of Li in such a way that, for the family (Ei), all the zeros coincide,

all the units coincide and are equal to u, and i Þ j Þ Ei ù E j 5 {0, u}. Let

L : 5 ø i E i. For p, q P L, say that p ’ q iff there is an index i with p, q P
Ei and p ’ q in E i , in which case p % q is defined to be p % q as calculated

in E i. Then the effect-algebra isomorphisms a i: Li ® Ei provide injective

effect-algebra morphisms a i: Li ® L with respect to which L is represented

as a horizontal sum of the family (Li).

Theorem 5.2. Let (G i , G 1
i , ui) be a nonempty family of nondegenerate

unigroups. Then there exists a unigroup (G, G +, u) and unigroup

homomorphisms a *i : Gi ® G such that the restrictions a i of a *i to Li : 5
G *i [0, ui] provide a representation of L : 5 G + [0, u] as a horizontal sum

of the family (Li) and, with respect to the unigroup homomorphisms ( a *i ),

G is a coproduct of the family (Gi) in the category of unigroups.

Proof. The proof proceeds along the same lines as the proof of Foulis

et al. (1994, Theorem 8.1), so we merely sketch it here. Let S i G i be the

direct sum of the groups Gi. By relabeling the groups Gi if necessary, we

can assume that each Gi is a subgroup of S i G i and that every element g P
S i Gi can be written uniquely in the form g 5 S i gi , where gi P G i for all

i and gi 5 0 for all but possibly finitely many indices i. Partially order S i

Gi in such a way that g 5 S i gi P ( S i Gi)
+ iff every gi P G i

+.

Let K be the subgroup of S i Gi consisting of all elements of the form

k 5 S iniui such that ni P Z, ni 5 0 for all but possibly finitely many indices

i, and S ini 5 0. Evidently K ù ( S iGi)
+ 5 {0}. Let G : 5 ( S iGi)/K and let

h : S iGi ® G be the canonical group epimorphism. Since K ù ( S iG i) 5
{0}, G is a partially ordered abelian group with positive cone G + : 5 h
(( S iGi)

+). Define u P G by u : 5 h (ui), noting that u is independent of the

choice of the index i and 0 Þ u P G +. Let L : 5 G + [0, u].

For each index i, let a *i be the restriction of h to the subgroup Gi

of S iG i , noting that a *i : G i ® G is a positive normalized group homomor-

phism. Furthermore, let a i be the restriction of a *i to Li 5 G 1
i [0, ui],

noting that a i : Li ® G + [0, u] is an effect-algebra morphism. In fact,

a i (Li) is a sub-effect algebra of L and a i is an effect-algebra isomorph-

ism of Li onto a i (Li) for each index i. Furthermore, (G, G +, u) is a

unigroup and it is a coproduct with respect to the unigroup homomorphi sms

( a i*) in the category of unigroups. Finally, the injective effect-algebra morph-

isms ( a i) provide a representation of L as a horizontal sum of the family

(Li). n
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6. HEYTING EFFECT ALGEBRAS AND HEYTING UNIGROUPS

In ascribing order-theoretic properties to an effect algebra L, we always

have reference to the partially ordered set (L, # ) where # is defined as in

Part (ii) of Definition 2.9. The greatest lower bound (or meet) and least upper

bound (or join) of elements p,q P L, when they exist, are written as p Ù q
and p Ú q, respectively. To say that L is lattice ordered means that (L, # )
is a lattice. If (L, # ) is a distributive lattice, we say that L is a distributive
effect algebra.

Not every lattice-ordered effect algebra is an interval effect algebra. For

instance, there are orthomodular lattices that admit no probability measures

(Greechie, 1971), whereas every interval effect algebra admits at least one

probability measure (Bennett and Foulis, 1997, Theorem 5.5). Just because
an interval effect algebra is lattice ordered, its universal group need not be

lattice ordered, nor even an interpolation group (Ravindran, 1996). Although

every finite distributive effect algebra is an interval effect algebra (Greechie

et al., 1995, Corollary 7.10), we do not know whether every distributive

effect algebra is an interval effect algebra.
If L is an effect algebra, then the center C(L) of L (Greechie et al.,

1995) consists of those elements z P L such that, for every x P L, the

elements x1 : 5 x Ù z and x2 : 5 x Ù z8 exist and the mapping x j (x1, x2)

decomposes L into a cartesian product of effect algebras L1 and L2. The

center C (L) is a sub-effect algebra of L and, as an effect algebra in its own

right, it is a boolean algebra.
Recall that a meet semilattice L with 0 is said to be pseudocomplemented

iff there is a mapping p j p , on L such that, for all p, q P L, p Ù q 5 0

Û q # p , (Birkhoff, 1967). If L is pseudocomplemented and p, q P L, then

p # q Þ q , # p , , p # p , , , p , , , 5 p , , p Ù q 5 0 Û p Ù q , , 5 0,

( p Ù q) , , 5 p , , Ù q , , , L has a largest element 0 , , and 0 , , 5 0.

Furthermore , L satisfies the De Morgan law for arbitrary joins, that is, if ( pi)
is a family of elements of L and Ú i pi exists in L, then Ù i pi

, exists in L and

( Ú i pi)
, 5 Ù i pi

, . An element p of a pseudocomplemented meet semilattice

L is closed iff p 5 p , , and dense iff p , 5 0. If ( pi) is a family of closed

elements of L and Ù i pi exists in L, then Ù i pi is closed.

Definition 6.1. A Heyting effect algebra (HEA) is a lattice-ordered effect

algebra L with a center-valued pseudocomplementation p j p , P C (L). A

unigroup (G,G+, u) is a Heyting unigroup iff G + [0, u] is an HEA.

Parts (i) and (ii) of the following lemma are two of the conditions in

the definition of a BZ-poset (Cattaneo and Nistico, 1989).

Lemma 6.2. If L is an HEA and p P L, then:

(i) p , # p8.
(ii) p , 8 5 p , , .
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(iii) p P C (L) iff p , 5 p 8.
(iv) C (L) 5 {p , | p P L}.

Proof. (i) Since p , P C (L), p 5 ( p Ù p , ) % ( p Ù p , 8) 5 p Ù p , 8,
so p # p , 8, whence p , # p 8. (ii) Since p , P C (L), it follows that p , 8 Ù
p , 5 0, so p , 8 # p , , . By (i), ( p , ) , # ( p , )8, whence p , 8 5 p , , . (iii)

If p 8 5 p , , then p 8 P C (L), so p 5 p 9 P C (L). Conversely, suppose p P
C (L). Then, for all q P L, q 5 (q Ù p) % (q Ù p /), so q Ù p 5 0 iff q #
p 8, whence p , 5 p 8. (iv) We have only to prove that C (L) # {p , | p P L}.
Let q P C (L). Then q 8 P C (L), so q 5 (q 8)8 5 q 8 , by (iii), whence q P
{p , | p P L}. n

A phi-symmetric effect algebra (Bennett and Foulis, 1995) can be defined

as a lattice-ordered effect algebra with the Riesz decomposition property.

Theorem 6.3. If L is an HEA, then L is a phi-symmetric effect algebra.

Proof. If p,q P L with p Ù q 5 0, then q # p , # p 8 by Part (i) of

Lemma 6.2. Therefore L is phi-symmetric by (Bennett and Foulis (1995,

Theorem 3.11, Part (vii)). n

Corollary 6.4. If L is an HEA, then L is a distributive interval effect

algebra and its unigroup is lattice ordered.

Proof. By Theorem 6.3 and Bennett and Foulis (1995, Theorem 3.14),

L is distributive. By Ravindran (1996, Theorem 3.9), L is an interval effect

algebra with a lattice-ordered universal group. n

Theorem 6.5. If L is an HEA, then L is a BZ-lattice.

Proof. In view of Lemma 6.2, we have only to prove that L is regular

(Cattaneo and Nistico, 1989). By Corollary 6.4, there is a lattice-ordered

group G such that L 5 G + [0, u]. By Goodearl (1986, Proposition 1.22), if

g P G and 2g P G +, then g P G +. Suppose p and q are isotropic elements

of L. Then 2p, 2q # u, so 0 # (u 2 2p) 1 (u 2 2q) 5 2(u 2 ( p 1 q)),

whence p 1 q # u, that is, p ’ q. n

Definition 6.6. Let L be an effect algebra with center C (L) and let p P
L. If there is a smallest element c in the set {z P C (L) | p # z}, then c is

called the central cover of p in L, denoted by g p : 5 c. Say that L has the

central cover property iff every element in L has a central cover.

Lemma 6.7. If L is an HEA, then L has the central cover property and
for all p, q P L:

(i) g p 5 p , , 5 p , 8.
(ii) g ( p Ù q) 5 g p Ù g q.
(iii) g p ’ q Û p Ù q 5 0 Û p ’ g q.
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(iv) g p 2 p 5 g p Ù p 8.
(v) If ( pi) is a family of elements of L and Ú ipi exists in L, then Ú i g pi

exists in L and g ( Ú ipi) 5 Ú i g pi.
(vi) The center C (L) is closed under the formation of all existing meets

and joins in L.

Proof. (i) We have p # p , , 5 p , 8 P C (L). If p # z P C (L), then

z 5 z , , by Part (iv) of Lemma 6.2, so p , , # z , , 5 z.
(ii) Since ( p Ù q) , , 5 p , , Ù q , , , (i) implies that g ( p Ù q) 5 g p Ù g q.
(iii) g p ’ q Û p , , # q 8 Û q # p , , 8 Û q # p , , , Û q # p , Û

p Ù q 5 0. By symmetry, p ’ g q Û p Ù q 5 0.

(iv) For elements x ’ y in any effect algebra, we have (x % y)8 5 x 8
2 y. Therefore, with x 5 p , , Ù p 8 and y 5 p,

(( p , , Ù p8) % p)8 5 ( p , , 8 Ú p9) 2 p 5 ( p , , , Ú p) 2 p

5 ( p , Ú p) 2 p

Because p , # p8 and p , Ù p 5 0, Bennett and Foulis (1995, Lemma 3.1)

implies that p , Ú p 5 p % p, and it follows that

(( p , , Ù p8) % p)8 5 ( p , % p) 2 p 5 p ,

whence ( p , , Ù p 8) % p 5 p , 8 5 p , , , so p , , 2 p 5 p , , Ù p 8.
(v) Let p 5 Ú ipi. Because pi # p for all i, it follows that g pi # g p for

all i. Suppose q P L and g pi # q for all i. Then g pi ’ q 8, so pi ’ g (q 8) by

(iii), whence pi # ( g (q 8))8 for all i. Thus, p # ( g (q 8))8, so g (q 8) ’ p, whence

q 8 ’ g p, that is, g p # q.
(vi) Let ( pi) be a family of elements in C (L), so that pi 5 g pi for all i.

If p 5 Ú i pi , then g p 5 Ú i g pi 5 Ú ipi 5 p by (v). Suppose q 5 Ù i pi. Then q
# pi for all i, whence g q # g pi 5 pi for all i, so g q # q. But q # g q, so

q 5 g q P C (L). n

A Stone algebra is a distributive lattice with smallest and largest elements

0 and 1 and with a pseudocomplementation p j p , such that p , Ú p , , 5
1 for all p P L. In a Stone algebra L, one has both of the De Morgan laws

( p Ú q) , 5 p , Ù q , and ( p Ù q) , 5 p , Ú q , (Gratzer, 1978).

Theorem 6.8. If L is an HEA, then L is a Stone algebra.

Proof. Let u be the unit of L. Because p , , 5 p , 8 is the complement

of p , in C (L), we have u 5 p , Ú p , , . n

Theorem 6.9. Let L be a lattice-ordered effect algebra. Then L is an

HEA iff L admits a central cover mapping p j g p such that, for all p, q P
L, p Ù q 5 0 Þ g p Ù q 5 0.
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Proof. If L is an HEA, and p, q P L with p Ù q 5 0, then q # p , 5
p , , , 5 ( g p) , , whence g p Ù q 5 0. Conversely, suppose L is lattice ordered

and admits a central cover mapping with the given property. Define p , : 5
( g p)8 for all p P L. Since g p P C (L), it follows that p , P C (L) and p , is

a complement of g p in L. Hence, p Ù p , # g ( p) Ù p , 5 0, Suppose q P
L and p Ù q 5 0. Then, by hypothesis, g p Ù q 5 0. Since g p P C (L), we

have q 5 (q Ù g p) % (q Ù ( g p)8) 5 q Ù p , , whence q # p , . n

In the proof of the following theorem, we use the fact that if L is any
effect algebra, x, y P L with x # y, and z P C (L), then ( y 2 x) Ù z, y Ù z,
and x Ù z exist in L and ( y 2 x) Ù z 5 ( y Ù z) 2 (x Ù z) (Greechie et al., 1995).

Theorem 6.10 (Generalized Comparability). If L is an HEA, p, q P L,

and z 5 ( p 2 p Ù q) , , then p Ù z # q and q Ù z 8 # p.

Proof. We have z P C (L) and z 8 5 z , P C (L). Thus,

( p Ù z) 2 ( p Ù z) Ù (q Ù z) 5 ( p 2 p Ù q) Ù z 5 0

whence p Ù z 5 ( p Ù z) Ù (q Ù z), so p Ù z # q Ù z. Also, by Bennett and

Foulis (1995, Corollary 2.4),

(q 2 p Ù q) Ù ( p 2 p Ù q) 5 0, so q 2 p Ù q # z

and it follows that

(q Ù z8) 2 ( p Ù z8) Ù (q Ù z8) 5 (q 2 p Ù q) Ù z8 # z Ù z8 5 z Ù z , 5 0

so q Ù z8 5 ( p Ù z8) Ù (q Ù z8), whence q Ù z8 # p Ù z8. n

The following technical lemma will assist in our proof of Theorem
6.13 below.

Lemma 6.11. If L is an HEA, p, q, r P L, r Ù p # q # p, and r # ( p
2 q) , , , then r # q.

Proof. Assume the hypotheses and let z : 5 ( p 2 p Ù r) , . Then p Ù z
# r by Theorem 6.10, whence

p Ù z 5 r Ù p Ù z # q Ù z # p Ù z

so p Ù z 5 q Ù z. Since z P C (L), we have

( p 2 q) Ù z 5 ( p Ù z) 2 (q Ù z) 5 0

whence p 2 q # z , , from which it follows that

r # ( p 2 q) , , # z , , , 5 z , 5 z8

Consequently, r 5 r Ù z 8 # p by Theorem 6.10, and it follows that r 5 r
Ù p # q. n
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Definition 6.12. If L is an HEA and p, q P L, define ( p . q) P L by

( p . q) : 5 ( p 2 p Ù q) , Ú q.

Theorem 6.13. If L is an HEA, then L is a Heyting algebra with ( p, q)
j p . q as the Heyting implication connective; that is, for p, q, r P L, r
Ù p # q Û r # ( p . q).

Proof. Let z : 5 ( p 2 p Ù q) , , so that ( p . q) 5 z Ú q, z P C (L), and

z8 5 z , P C (L). For each element x P L, let x1 : 5 x Ù z and x2 5 x Ù z8.
Let Li : 5 {xi | x P L} for i 5 1, 2. Since z P C (L) is isomorphic to L1 3 L2

under x j (x1, x2).

By Theorem 6.10, p1 5 p Ù z # q Ù z 5 q1 and q2 5 q Ù z8 # p Ù z8 5
p2. Also, z1 5 z and z2 5 z Ù z8 5 0.

Suppose r # ( p . q) 5 z Ú q. To prove r Ù p # q, it suffices to prove

ri Ù pi # qi for i 5 1,2. Since p1 # q1, we have r1 Ù p1 # q1. Also, r # z
Ú q implies r2 # z2 Ú q2 5 q2, so r2 Ù p2 # q2, and we have r Ù p # q.

Conversely, suppose r Ù p # q. To prove that r # z Ú q, it suffices to

prove ri # zi Ú qi for i 5 1, 2. Since r1 # z 5 z1 # z1 Ú q1, we need only
prove that r2 # z2 Ú q2; that is, r2 # q2. Since q2 # p2, we have q2 5 p2 Ù
q2 5 p Ù q Ù z8. Consequently,

p 2 2 q 2 5 ( p Ù z8) 2 ( p Ù q Ù z8) 5 ( p 2 p Ù q) Ù z8

5 ( p 2 p Ù q) Ù z , 5 ( p 2 p Ù q) Ù ( p 2 p Ù q) , ,

5 p 2 p Ù q

Therefore, z 5 ( p 2 p Ù q) , 5 ( p2 2 q2)
, . The condition r Ù p # q implies

that r2 Ù p2 # q2, whence r2 Ù p2 # q2 # p2. Also, r2 # z8 5 ( p2 2 q2)
, 8

5 ( p2 2 q2)
, , , and it follows from Lemma 6.11 that r2 # q2. n

7. STONE GROUPS AND CONDITIONALIZATION

If X is a topological space, A is a subgroup of the additive group R of
real numbers, and A is endowed with the relative topology inherited from R,

then C (X, A) denotes the additive group, under pointwise addition, of all

continuous functions f : X ª A with the pointwise partial order. Evidently,

C (X, A) is lattice ordered, every order unit u in C (X, A) is a strictly positive

function, and if X is compact, every strictly positive function u in C (X, A)

is an order unit. If u is an order unit in C (X, A), then (C (X, A), u) is a unigroup.

Definition 7.1. If X is a topological space and A is an additive subgroup

of R, let F (X, A) be the subgroup of C (X, A) consisting of the functions f
P F (X, A) such that f (X ) : 5 { f (x) | x P X } is a finite subset of A.
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In Definition 7.1, it is clear that, as a partially ordered set, F (X, A) is

a sublattice of C (X, A), so F (X, A) is a lattice-ordered abelian group.

Theorem 7.2. If X is a topological space, A is an additive subgroup of
R, and u P F (X, A) with 0 , u (x) for all x P X, then (F (X, A), u) is a

Heyting unigroup.

Proof. Since the functions in F (X, A) take on only finitely many values,

it is clear that u is an order unit. An order unit in a lattice-ordered abelian

group is automatically generative and universal, so (F (X, A),u) is a unigroup.
Let L : 5 F (X, A)+[0, u]. Since L is a lattice-ordered effect algebra, Corollary

3.17 of Bennett and Foulis (1995) implies that C (L) consists of all functions

f P L such that, for all x P X,

( f Ù (u 2 f ))(x) 5 min( f (x), u (x) 2 f (x)) 5 0

Hence, f P C (L) iff, for all x P X, f(x) 5 0 or f (x) 5 u (x). For f P L, let
f , (x) : 5 0 iff f (x) Þ 0 and f , (x) : 5 u (x) iff f (x) 5 0. Thus, f P L « f , P
C (L) and, for all g P L, f Ù g 5 0 iff g # f , , whence L is an HEA. n

Definition 7.3. If X is a compact, Hausdorff, totally disconnected topolog-

ical space (i.e., a Stone space), then the partially ordered abelian group G (X )

: 5 C (X, Z) is called the Stone group over X.

For the remainder of this section, we assume that X is a Stone space
and G(X ) is the corresponding Stone group. Let B be the boolean algebra

of compact open subsets of X. By the Stone representation theorem (Stone,

1936, 1937), any boolean algebra B can be so represented.

Since Z carries the discrete topology, every function g P G (X ) satisfies
the condition that g 2 1(n) is a clopen subset of X for every n P Z; hence,

since X is compact, g can take on only finitely many different values. Thus,

G (X ) 5 F (X, Z). Denote by u1 P G (X )+ the constant function u1(x) : 5 1

for all x P X, noting that u1 is an order unit and that u P G (x)+ is an order

unit iff u1 # u. Therefore a Stone group G (X ) admits a unique smallest order

unit, namely u1.
The effect algebra L1 : 5 G (X )+ [0, u1] consists of the characteristic set

functions of compact open subsets of X, hence it is isomorphic to the boolean

algebra B. In what follows, we shall identify B with L1. If u is an order unit

in G (X )+, then, as observed in the proof of Theorem 7.2, elements in the

center of G (X )+ [0, u] are precisely the functions that agree with u wherever

they are nonzero; hence, the center of G (X )+ [0,u] is isomorphic to L1 5 B.
Thus, the centers of all the Heyting effect algebras corresponding to order

units u P G (X )+ are isomorphic to each other and to the boolean algebra B.
The dense elements in the Heyting algebra G (X )+ [0, u] are precisely the

functions that are strictly positive.
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If n is a positive integer, let Ln : 5 G (X )+ [0, nu1], noting that Ln 5 nL1

5 nB in the notation of Definition 4.8. If one regards B as a ª logic of two-

valued propositionsº or a ª space of events,º then the elements of nB can be
regarded as an ª (n 1 1)-valued logicº over B. Indeed, each x P X produces

ª truth valuesº on a discrete scale Cn from 0 to n for the elements p P Ln by

the evaluation p j p (x).

The effect algebra 2B 5 L2 obtained by doubling the boolean algebra

B is a Heyting algebra in which the dense elements g are the functions taking

on only the two values 1 or 2 in Z; hence, as a partially ordered set, they
form a boolean algebra isomorphic to B under the mapping g j g 2 u1. By

a theorem of Walker (1994, Theorem 4), it follows that 2B can be identified

as the space of conditional events over the boolean algebra B. Specifically,

the identification is accomplished as follows:

Definition 7.4. If B 5 L1, 2B 5 L2, and p, q P L1, the conditionalized
element p | q P 2B is defined by

p | q : 5 ( p Ù q) 1 ( p Ú (u1 2 q))

If elements p, q of the boolean algebra B are regarded in the usual way

as (classical) propositions or events, then p | q in Definition 7.4 can be thought

of as the conditional proposition or event ª p given qº (Goodman, 1994). The

mapping p j p | u1 5 2p provides an isomorphism of B onto the center C (L2),
permitting an identification of the unconditional event p with p conditioned

by the sure event u1. Various logical desiderata such as ª modus ponens,º

(q | u1) Ù ( p | q) # p | u1

and ª entailment within the consequent,º

( p | q) Ù (r | q) # ( p Ù r) | q

are now easily derived. Furthermore, 2B becomes a 3-valued logic with truth

values 0,1,2 under evaluations corresponding to the points in the Stone

space X.
The algebra of conditional events is critical for dealing with ª if-thenº

rules in expert systems (Nguyen and Walker, 1994). It comes as a pleasant
surprise to see that there is a connection between this algebra and quan-

tum logic.
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